नमस्कार...... आपले हार्दिक स्वागत

नमस्कार...... आपले हार्दिक स्वागत..... फॉलोअर मध्ये जाऊन माझा ब्लॉग फॉलो करा व अपडेट मिळवा . ही नम्र विनंती"

हार्दिक स्वागत ......WEL COME

सर्व मराठी शाळांच्या प्रगतीसाठी प्रयत्न करणाऱ्या सर्वांचे हार्दिक स्वागत����������������

गणित a number of game

1.0 with a number of game Fun with numbers),   

  Before learning about the properties of numbers , let us know some interesting things about them.
Did you say the number that came to mind?
Can you tell the number your friend kept in his mind?
Follow the steps below :
Ed.
Action.
E.g.
1
Tell your friend to have a full number in mind
Let 27 be
2
Multiply it by 2 
54
3
Tell them to add 4 to it  
58
4
Tell it to divide by 2   
29
5
Tell them the answer
29
If the answer is 2, then the number he has in mind is 27! 
What is the math behind this ?
Let x be   number .
Ed.
Action
E.g.
1
Ask your friend to keep a full number in mind
Let be
2
Multiply it by 2 
2x
3
Tell them to add 4 to it  
2x + 4
4
Tell it to divide by 2   
x + 2
5
Tell them the answer
x + 2
The number that comes from that answer is 2 , the number he has in mind is x 
Similarly, think of your own formula (eg multiply by 4 , .....)
In mathematics, there are many such tricks that can be tailored to your imagination.

The number of  to  9, plus special numbers .
1. The      sum of the digits of the number 123456789 is 45 (= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
2.      The number multiplied by is 246913578. The sum of the digits in this number is 45 (= 2 + 4 + 6 + 9 + 1 + 3 + 5 + 7 + 8) Another point to note here is that each of the numbers from to 9 is non-repetitive! What do you notice by multiplying 123456789 by 4,5,7,8 ?  
3.      Note the multiples of (they are : 9, 18, 27, 36, 45, 54, 63, 72, 81, 90,99,108,117 .. ( The sum of the digits of these is 9 (1 + 8 = 9,2 + 7 = 9). .) Note also that.  

Categories features :
What did you notice?
A number class is obtained by adding an odd number that is sequential to the number of the previous class.
Wondering? There is a mathematical formula behind this. In the next lessons we will learn how to expand (a + b) 2 As such
(n + 1) 2 = n 2 + 2n + 1 2 = n 2 + (2n + 1). 
Where 2n + 1 is the   next odd number of the last odd number in 2 . 
Meru Proposal: Note the following alignment :

This is the first tip of the triangular caukadolagina the number of victims in the film in which the Row 0 agideyavude the final two on each side of the square adjacent to the number for other meanings. Row 1 line caukadolagina digits and to Ve This is the sum of and in the square above it The number in the square of Row 2 is 1,2,1 , which is the sum of 0,1, 1,1 and 0,1 respectively (0 + 1 = 1 ; 1 + 1 = 2 ; 1 + 0 = 1             ). Row 3   line   Square No. 1,3,3,1   , respectively, its upper square 0,1, 1,2,2,1   and 0.1   of the sum (0 + 1 = 1 ; 1 + 2 = 3 ; 2 + 1 = 3 ; 0 + 1 = 1 ). This is how each row can be filled with numbers. [Simply put, if is a line number and is a square number, then every number in the square can be filled with n C r = ]. n C r Next Class 10         Learn from. Cree, Poo. century pingalanu used this idea in his chandas science appears to us, is Meru present (stepping on top of the mountain)   was called. This is attributed to AD. 10 th century,   halayudhanu definition given. Ironically,   it  was invented by Indians as early as 1900 years ago, but it is still in existence 17th -century mathematician Pascal 's name is called!      
Notice the  specifics of Pingala's masterpiece .



Specials (where   of n   have 0 from the start) line sankhyeyagirali) :
1.        caukadolagina the sum of digits is always  of n ( blue in color, was identified) eg 1 = 2 0 1 + 1 = 2 = 2, 1 , 1 + 2 + 1 = 4 = 2 1 + 3 + 3 + 1 = 8 = 2 3 ,,)  
2. The      row number is always 11 n ( marked in red ) eg 1 = 11 0 , 11 = 11 1 , 121 = 11 2 , 1331 = 11 3 …) 
3.      The digits in the square of the diagonal denote the natural numbers. (1,2,3…. Red squares )
4.      hypotenuse Square   digits former vice gathered in   the   full vargasankhyeyaga be (1 = 1 2 , 1 + 3 = 4 = 2 2 , 3 + 6 = 9 = 3 2 , 6 + 10 = 16 = 4 2 , .... The green -colored squares )
(The square root of two identical numbers is a whole number )
5.      Any string in number than any other avibhajyasankhyeyagiddare, that string in the following digits   on its gunalabdhagalagiruttave. For example, row of the Sun 3,3 Line in the 5,10,10,5 line in 7213535217)   

Seeing the above statement in a different way    :
The first to leave a red color on the diagonal numbers indicated in the previous numbers mottavagiruttadeavu
1 2 3 5 8 13 21 34 55 89 ( 2 = 1 + 1, 3 = 2 + 1, 5 = 2 + 3,8 = 3 + 5, 13 = 5 + 8, 21 = 8 + 13, 34 = 13 +21 ..).

This series is called the Italian mathematician Fibonacci ( 12th century).

Magic :

It is a square and there are squares (3 horizontal lines R1, R2 and R3). (3 pole lines C1, C2 and C3). The digits in the squares are from to , with no middle point left and none repeating. As well  

The sum of the digits of each row R1, R2 and R3) is 15.  
The sum of the digits of each pole (C1, C2 and C3) is 15.
The   sum of the digits of the diagonal line drawn from the red line is 15.
15 of mayamotta ( ', as Magic in a sum ', ),   that kareyutteveadu row / column / sum of digits on the diagonal.

Above is a  magic wand that contains all the numbers from to 18 (9 digits Here is the magic amount of 30.
More examples:

magic magic = 65)



magic magic = 175)



Mayamotta be given to such a magic square is impossible to create ?. Possible and mayamotta 45 have the magic square   
                   
So far we have learned about some interesting numbers in mathematics So what's the math ?
  Let us think about solving a business problem
Problem Your father / mother / relatives pay their friends Rs . Assume that 5000 is   lent After some time , this is the type of debt payment that he will not be burdened with . That day is the day sankhyeganugunavagi      crore   as of 100 days and   amortization th Day and Rs   2 on the third day rupees .... The 100 th day of 100- Rs ). If so, can   that friend pay off ?How much more / less   will he return ?
Here's what we have to do starting from 100   until the calculated sum of the numbers in the hidiyabekallave ?

General and corrective action :
  1
+2
+3
+4
…   :
+100
====

====
Bahusa 10 pm kudisuvalli celluvire lost patience with the hand? Is it possible the other way around?
Step :   
1 + 2 + 3 + 4 + 5   How to write a + 100 in two lines as follows?  
    1+   2+   3 + 4 + 5 … + 50      
100+   99+   98+. .. +51      
==================
101 + 101 + 101. ..   +101      
==================
= 50 * 101 = 5050

Step :   
1 + 2 + 3 + 4 + 5   . + 10 = 55
11 + 12 + 13 +   . + 20 = (10 + 1) + (10 + 2) + (10 + 3) +. . + (10 + 10) = 155
21 + 22 + 23 +   . + 30 = (20 + 1) + (20 + 2) + (20 + 3) +. . + (20 + 10) = 255
.
91 + 92 + 93 +   . + 100 = (90 + 1) + (90 + 2) + (90 + 3) +. . + (90 + 10) = 955
Total = 55 + 155 + 255 …… + 955 = 100 + 200… + 900 + 55 * 10 = 100 (1 + 2 + 3…. +9) + 550 = 4500 + 550 = 5050

Step :   
1 + 2 + 3 + 4 + 5   .9 + 10
1) Average of and 10 = 5.5  
2) The mean of and    = 5.5
..
5) The mean of and    = 5.5
1 + 2 + 3 + 4 + 5.   9 + 10) /2=5.5*5= 55
1 + 2 + 3 + 4 + 5.   9 + 10) = 5.5 * 10 = 55 Average Total Numbers )
The same logic is   1 + 2 + 3 + 4 + 5   When used in + 100        
Since 1 and 10 0 are average = 50.5 and there are 100 numbers in total  
1 + 2 + 3 + 4 + 5   . + 100 = 50.5 * 100 = 5050


Note that the answer is the same, although the methods are different. Using a different method saves time.   A friend paid Rs 5000 loan for 100 days, as well as the loan is not fully tirisuvudu hechagi Rs Gives 50 .  

Debt rules help you to solve the problems in exams especially in competitive (CET CAT, GMAT, KAS, IAS, Banking, Police ..) tests that are important for time management.





Information Technology Device

To be divided into residuals

Examples
2
Last digit must be equal to (0,2,4,6,8)
12 Yes

12 No
3
The sum of digits in numbers must be   divided by 3 
8 1 3 + 8 + 1 = 12, and 12 ÷ 3 = 4) Yes

1 7 2 + 1 + 7 = 10, and 10 ÷ 3 in a = 3 in a  1 / 3 in a ), No Do
4
The last two digits must be divisible by 4
13 12 Yes ( 12 ÷ 4 = 3)

70 19 No
5
Last Digit   or 5, the shall
17 Yes

80 No
6
The number must be divided by and 3 
4 ( number and 1 + 4 = 6 and 6 ÷ 3 = 2) Yes

8 ( samasankhyeyadaru 3 + 0 + 8 = 11 and 11 ÷ 3 = 3 and  2 for / 3 ), No Do
7
The answer obtained by subtracting the last digit of the number from is subtracted from the remainder 
·                      0
·                     Or 
To be                      divided by · 7
This rule can be applied to the intermediate north of which it is available )
67 2 's doubled  4, 67 -4 = 63, and 63 ÷ 7 = 9) Yes
3 's doubled 6, 6 -6 = 0) Yes 
90 5 of multiples of 10, 90 -10 = 80 and 80 = the 11 of 7 ÷  3 in a / of 7 ), No Do
8
The answer obtained by the last digits must be divided by .
109 816 ( 816 ÷ 8 = 102) Yes

For 216 in total of 302 ( total of 302 ÷ the 8 = 37-  3 in a / 4 for ), No Do
9
The sum of digits in the number must be   divided by this rule can be applied to the answer of the given interval ) 
9 ( 1 + 6 + 2 + 9 = 18, and re 1 + 8 = 9) Yes

2013 (2 + 0 + 1 + 3 = 6) No
10
The last digit is   0
22 Yes

22 No
11
Sum of digits in equal positions Sum of digits in odd positions )
0
Or
Divided by 11
4 (( 3 + 4 ) - ( 1 + 6 ) = 0 ) Yes
9 (( 7 + 9 ) - ( 3 + 2 ) = 11 ) Yes

5 1 7 6 (( 5 + 7 ) - ( 2 + 1 + 6 ) = 3 ) No
12
The number must be divisible by and 4 

8 ( 3 from 6 +4+ 8 = 18 and 18 ÷ 3 = 6 Yes 4 from 8 ÷ 4 = 12 Yes) Yes

 
4 ( 3 pm 5 +, 2 +, 4 = the 11, the 11 ÷ 3 = 3  2 / No Do 4 pm check .), No Do
 

1.0 Summary learned


Number
Highlights learned
1


Meru proposal.
Different types of magic
2
Terms of Indemnity

कोणत्याही टिप्पण्‍या नाहीत:

टिप्पणी पोस्ट करा

आगामी झालेले